Buckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads

Authors

  • R Rezae Faculty of Mechanical Engineering, University of Shahrood
  • S Abolghasemi Faculty of Mechanical Engineering, University of Shahrood
Abstract:

This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the non-homogenous material properties vary through the plate thickness according to a power function. The developed finite element (FE) code with an extended mesh pattern is written in MATLAB software. The effects of aspect ratio of the plate, ellipse radii ratio, position and orientation of the cutout, boundary conditions (BCs) and volume fraction exponent are investigated in details. The results of present code are compared with those available in the literature and some useful design-orientated conclusions are achieved.                                      

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On Symmetric and Asymmetric Buckling Modes of Functionally Graded Annular Plates under Mechanical and Thermal Loads

In the present article, buckling analysis of functionally graded annular thin and moderately thick plates under mechanical and thermal loads is investigated. The equilibrium and stability equations of the plate are obtained based on both classical and first order shear deformation plate theories. By using an analytical method, the coupled stability equations are converted to independent equatio...

full text

Buckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading

In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition fourier solution f...

full text

Thermal buckling analysis of ceramic-metal functionally graded plates

Thermal buckling response of functionally graded plates is presented in this paper using sinusoidal shear deformation plate theory (SPT). The material properties of the plate are assumed to vary according to a power law form in the thickness direction. Equilibrium and stability equations are derived based on the SPT. The non-linear governing equations are solved for plates subjected to simply s...

full text

Buckling Analysis of Thin Functionally Graded Rectangular Plates with two Opposite Edges Simply Supported

In this article, an exact analytical solution for thermal buckling analysis of thin functionallygraded (FG) rectangular plates is presented. Based on the classical plate theory and using the principle ofminimum total potential energy, the stability equations are obtained. Since the material properties in FGmaterials are functions of the coordinates (specially the thickness), the stability equat...

full text

Closed Form Solutions for Thermal Buckling of Functionally Graded Rectangular Thin Plates

This work concerns the critical buckling temperature of functionally graded rectangular thin plates; the properties of functionally graded material vary continuously in accordance with the power law of thickness z. Closed form solutions for the critical thermal parameter are obtained for the plate with the following boundary condition combinations: simply supported, clamped and guided edges, un...

full text

Isogeometric approach for nonlinear bending and post-buckling analysis of functionally graded plates under thermal environment

Department of Mechanical Construction and Production, Faculty of Engineering and Architecture, Ghent University, 9000, Ghent – Belgium Department of Architectural Engineering, Sejong University, 98 Kunja Dong, Kwangjin Ku, Seoul, 143-747, South Korea Center for Interdisciplinary Research in Technology (CIRTech), Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietna...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  41- 57

publication date 2015-03-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023